\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2018
Subject Name: Operations Research (OR)

Subject Code: 5CS04MOR1
Branch: MCA
Semester : 4
Date : 24/04/2018
Time : 10:30 To 01:30
Marks :70

Instructions:
(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1
Attempt the Following questions
a. What is OR?
b. Write full Form of LPP 1
c. What is slack variable 1
d. What is Artificial variable1
e. What is Degeneracy in Transportation problem 1
f. What is Saddle point1
g. What is Optimality check? 1

Q-2 Attempt all questions
1 Solve following LP Problem Using Graphical Meth
Max $Z=15 X_{1}+10 X_{2}$

$$
\begin{array}{ll}
\text { Subject to } & 4 \mathrm{x}_{1}+6 \mathrm{x}_{2} \leq 360 \\
& 3 \mathrm{x}_{1}+0 \mathrm{x}_{2} \leq 180 \\
& 0 \mathrm{x}_{1}+5 \mathrm{x}_{2} \leq 200
\end{array}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
2 Use the Simplex Method to solve the Following L.P Problem
Maximize $\mathrm{Z}=3 \mathrm{x} 1+5 \mathrm{x} 2+4 \mathrm{x} 3$
Subject to Constraints $2 \times 1+3 \times 2 \leq 8$

$$
\begin{aligned}
& 2 \times 2+5 \times 3 \leq 10 \\
& 3 \times 1+2 \times 2+4 \times 3 \leq 15_{\mathrm{X} 1}, \mathrm{x} 2, \mathrm{x} 3 \geq 0
\end{aligned}
$$

OR

$\begin{array}{lll}\text { Q-2 } & & \text { Attempt all questions } \\ & 1 & \text { Solve following LP Pro }\end{array}$
1 Solve following LP Problem Using Simplex Method
Max $Z=3 X_{1}+2 X_{2}$
Subject to $x_{1}+x_{2} \leq 4$
$\mathrm{x}_{1}-\mathrm{x}_{2} \leq 2$ and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
2 Write the Algorithm Steps for simplex Method
Q-3 Attempt all questions
1 Apply MODI method and obtain basic feasible solution by VAM

	I	II	III	IV	Supply
A	5	2	4	3	22
B	4	8	1	6	15
C	4	6	7	5	8
Requirement	7	12	17	9	

2
Find Initial Solution Using NWCM,LCM, \& VAM Method

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	34

OR

Q-3 1 Five Men are available to different five jobs find the minimize the total time

2	9	2	7	1
6	8	7	6	1
4	6	5	3	1
4	2	7	3	1
5	3	9	5	1

2 Advantage and disadvantages of Linear Programming
Attempt the Following questions (1 Mark)
a. What is Feasible Solution?
b. Write the full form of PERT\& CPM
c. Explain Looping and Dangling1
d. What is dummy activity? 1
e. What is Event?
f. What is replacement? 1
g. What is Simulation?

1 Given the following pay-off matrix of a two-person zero-sum game, determine the optimal strategies for the players and the value of the game. Is the game strictly determinable? Is it fair?

Players A strategies	Players B strategies			
	B1	B2	B3	B4
A1	2	-2	4	1
A2	6	1	12	3
A3	-3	2	0	6
A4	2	-3	7	1

Q-5 1 A dentist Schedule all his patients to 30minutes some patients takes more time and its probabilities given below

Category of services	Times required (Minutes)	Probability
Filing	$\mathbf{4 5}$	$\mathbf{0 . 4 0}$
Crown	$\mathbf{6 0}$	$\mathbf{0 . 1 5}$
Cleaning	$\mathbf{1 5}$	$\mathbf{0 . 1 5}$
Extraction	45	$\mathbf{0 . 1 0}$
Checkup	$\mathbf{1 5}$	$\mathbf{0 . 2 0}$

Random numbers 4082113425661779 find the average waiting
2 five jobs each of which must be processed on the two machine A \& B Processing time in hours are given

Job	1	2	3	4	5
Machine A	5	1	9	3	10
Machine B	2	6	7	8	4

Determine the sequence of five jobs and total elapsed time.

Q-6 Attempt all questions

Job	Immediate Predecessor	Time (Days)	Job	Immediate Predecessor	Time (Days)
A	---	5	F	D	$\mathbf{2}$
B	A	7	G	C	$\mathbf{1}$
C	B	2	H	E,F	$\mathbf{3}$
D	B	$\mathbf{3}$	I	G,H	$\mathbf{1 0}$
E	C	$\mathbf{1}$			

the arrow diagram.
(2) Identify the critical path and find the total project duration.

2 The Data collected and cost price is Rs. 12200 and scrape value Rs.200data are given below

Year	Running Cost
1	200
2	500
3	800
4	1200
5	1800
6	2500
7	3200
8	4000

Find an optimal replacement of machine

OR

Attempt all Questions

1 Following table is given calculate the total estimation time, critical path, total and free float For each non critical activity.

Activity	Duration	Predecessor	Activity	Duration	Predecessor
A	$\mathbf{6}$	--	\mathbf{G}	$\mathbf{2}$	--
B	$\mathbf{4}$	A	H	$\mathbf{1 0}$	G
C	$\mathbf{7}$	B	I	$\mathbf{6}$	J,H
D	$\mathbf{2}$	A	J	$\mathbf{1 3}$	--
E	$\mathbf{4}$	D	K	$\mathbf{9}$	A
F	$\mathbf{1 0}$	E	L	$\mathbf{3}$	C,K
			M	$\mathbf{5}$	I,L

2 A book binder has one printing and binding press for 7 manuscripts are as below

Book	1	2	3	4	5	6	7
Printing (Time)	20	90	80	20	120	15	65
Binding (Time)	25	60	75	30	90	35	50

Determine optimal sequence and total time required for bring all books.

